
2026/02/02 02:33 1/19 hello_world

IT ENCYKLOPEDIE - http://serviceit.cz/

C

#include <stdio.h> int main(){printf("Hello, World!\n");return 0;}

C++

#include <iostream>\nint main(){std::cout << "Hello, World!" << std::endl;}

C#

using System;\nclass Hello{static void Main(){Console.WriteLine("Hello,
World!");}}

Java

public class HelloWorld{public static void main(String[]
args){System.out.println("Hello, World!");}}

Python

print("Hello, World!")

Ruby

puts "Hello, World!"

JavaScript

console.log("Hello, World!");

PHP

<?php echo "Hello, World!"; ?>

Bash

echo "Hello, World!"

PowerShell

Write-Output "Hello, World!"

Go

package main\nimport "fmt"\nfunc main(){fmt.Println("Hello, World!")}

Rust

fn main(){println!("Hello, World!");}

Last update: 2026/01/03 16:03 hello_world http://serviceit.cz/doku.php?id=hello_world

http://serviceit.cz/ Printed on 2026/02/02 02:33

Swift

print("Hello, World!")

Kotlin

fun main(){println("Hello, World!")}

Perl

print "Hello, World!\n";

Lua

print("Hello, World!")

Haskell

main = putStrLn "Hello, World!"

R

cat("Hello, World!\n")

MATLAB

disp('Hello, World!')

Scala

object HelloWorld extends App {println("Hello, World!")}

Dart

void main(){print('Hello, World!');}

TypeScript

console.log('Hello, World!');

Elixir

IO.puts "Hello, World!"

Julia

println("Hello, World!")

F#

2026/02/02 02:33 3/19 hello_world

IT ENCYKLOPEDIE - http://serviceit.cz/

printfn "Hello, World!"

Objective‑C

#import <Foundation/Foundation.h>\nint
main(){@autoreleasepool{NSLog(@"Hello, World!");}}

Visual Basic .NET

Module Hello\n Sub Main()\n Console.WriteLine("Hello, World!")\n End
Sub\nEnd Module

Pascal

program HelloWorld;begin writeln('Hello, World!');end.

Fortran

program hello\n print *, "Hello, World!"\nend program hello

COBOL

IDENTIFICATION DIVISION.\nPROGRAM-ID. HELLO.\nPROCEDURE DIVISION.\nDISPLAY
"Hello, World!".\nSTOP RUN.

Ada

with Ada.Text_IO; use Ada.Text_IO;\nprocedure Hello is begin\n Put_Line
("Hello, World!");\nend Hello;

Assembly (NASM, x86‑Linux)

section .data\n msg db "Hello, World!",10\n len equ $-msg\nsection .text\n
global _start\n_start:\n mov eax,4 ; sys_write\n mov ebx,1 ; stdout\n mov
ecx,msg\n mov edx,len\n int 0x80\n mov eax,1 ; sys_exit\n xor ebx,ebx\n int
0x80

Brainfuck

++++++++++[>+++++++>++++++++++>+++>+<<<<-
]>++.>+.+++++++..+++.>++.<<+++++++++++++++.>.+++.------.--------.>+.>.

Clojure

(println "Hello, World!")

Lisp (Common)

(format t "Hello, World!~%")

Last update: 2026/01/03 16:03 hello_world http://serviceit.cz/doku.php?id=hello_world

http://serviceit.cz/ Printed on 2026/02/02 02:33

Scheme

(display "Hello, World!") (newline)

Prolog

:- initialization(main).\nmain :- write('Hello, World!'), nl, halt.

Erlang

-module(hello).\n-export([start/0]).\nstart() -> io:format("Hello,
World!~n").

OCaml

print_endline "Hello, World!";;

Haxe

class Main {static function main(){trace("Hello, World!");}}

Smalltalk

Transcript show: 'Hello, World!'; cr.

Tcl

puts "Hello, World!"

Racket

#lang racket\n(displayln "Hello, World!")

Groovy

println 'Hello, World!'

LuaJIT

print("Hello, World!")

Crystal

puts "Hello, World!"

Nim

echo "Hello, World!"

2026/02/02 02:33 5/19 hello_world

IT ENCYKLOPEDIE - http://serviceit.cz/

D

import std.stdio;\nvoid main(){writeln("Hello, World!");}

Dart (Flutter)

void main(){runApp(const Center(child: Text('Hello, World!')));}

Forth

." Hello, World!" CR

PL/SQL

BEGIN DBMS_OUTPUT.PUT_LINE('Hello, World!'); END;

SQL (MySQL)

SELECT 'Hello, World!' AS greeting;

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.ALL; entity hello is end hello;
architecture behav of hello is begin process begin report "Hello, World!";
wait; end process; end behav;

module hello; initial $display("Hello, World!"); endmodule

LaTeX (document)

\documentclass{article}\begin{document}Hello, World!\end{document}

Markdown (code‑fence)

1
text\nHello, World!\n

| | Racket |

(displayln "Hello, World!")

| | AWK |

BEGIN {print "Hello, World!"}

| | Sed |

s/.*/Hello, World!/

Last update: 2026/01/03 16:03 hello_world http://serviceit.cz/doku.php?id=hello_world

http://serviceit.cz/ Printed on 2026/02/02 02:33

| | Makefile |

all:\n\t@echo "Hello, World!"

| | Dockerfile |

FROM alpine\nCMD ["echo","Hello, World!"]

| | YAML (anchor) |

message: "Hello, World!"

| | JSON |

{ "message": "Hello, World!" }

| | XML |

<message>Hello, World!</message>

| | HTML |

<!DOCTYPE html>\n<html><body>Hello, World!</body></html>

| | CSS |

body::after {content: "Hello, World!";}

| | Sass |

body:before\n content: "Hello, World!"

| | Less |

body:before { content: "Hello, World!"; }

| | CoffeeScript |

console.log "Hello, World!"

| | TypeScript (Deno) |

console.log("Hello, World!");

| | Zig |

const std = @import("std");\npub fn main() void { std.debug.print("Hello,
World!\n", .{}); }

2026/02/02 02:33 7/19 hello_world

IT ENCYKLOPEDIE - http://serviceit.cz/

| | Crystal |

puts "Hello, World!"

| | Haskell (GHCi) |

putStrLn "Hello, World!"

| | Idris |

module Main\nmain : IO ()\nmain = putStrLn "Hello, World!"

| | J |

'Hello, World!'

| | Kotlin/Native |

fun main() = println("Hello, World!")

| | Lisp (ClojureScript) |

(.log js/console "Hello, World!")

| | MATLAB (Octave) |

disp('Hello, World!')

| | Mercury |

:- module hello.\n:- interface.\n:- pred main(io::di, io::uo) is det.\n:-
implementation.\nmain(!IO) :- io.write_string("Hello, World!\n", !IO).

| | Nix |

let msg = "Hello, World!"; in builtins.trace msg null

| | OCaml (utop) |

print_endline "Hello, World!";;

| | Perl6 (Raku) |

say "Hello, World!";

| | PostScript |

(Hello, World!) show

Last update: 2026/01/03 16:03 hello_world http://serviceit.cz/doku.php?id=hello_world

http://serviceit.cz/ Printed on 2026/02/02 02:33

| | Prolog (SWI) |

:- initialization(main).\nmain :- writeln('Hello, World!'), halt.

| | PureScript |

main = log "Hello, World!"

| | Racket (typed) |

#lang typed/racket\n(: main (-> Void))\n(define (main) (displayln "Hello,
World!"))

| | REBOL |

print "Hello, World!"

| | RPG |

**FREE\nDcl-S msg VarChar(25) Inz('Hello, World!');\nDsply msg;

| | Rust (edition 2021) |

fn main(){println!("Hello, World!");}

| | Scala (2) |

object Hello extends App {println("Hello, World!")}

| | Scheme (Racket) |

#lang racket\n(displayln "Hello, World!")

| | Smalltalk (Pharo) |

Transcript show: 'Hello, World!'; cr.

| | Solidity |

pragma solidity ^0.8.0;\ncontract HelloWorld {function hello() public pure
returns (string memory){return "Hello, World!";}}

| | SPARK |

with Ada.Text_IO; use Ada.Text_IO;\nprocedure Hello is begin Put_Line
("Hello, World!"); end Hello;

| | Starlark |

2026/02/02 02:33 9/19 hello_world

IT ENCYKLOPEDIE - http://serviceit.cz/

print("Hello, World!")

| | Swift (Linux) |

print("Hello, World!")

| | TLA+ |

------------------------------ MODULE Hello ------------------------------
\nEXTENDS Naturals\nTHEOREM Hello == ASSUME TRUE PROVE \n (\E x \in Nat : x
= 0) * dummy proof – in TLA+ every spec is a
program\n===
==========

| | Vala |

void main(){print("Hello, World!\n");}

| | Verilog‑AMS |

timescale 1ns/1ps\nmodule hello; initial $display("Hello, World!");
endmodule

| | VHDL (2008) |

library IEEE; use IEEE.STD_LOGIC_1164.ALL; entity hello is end; architecture
sim of hello is begin process begin report "Hello, World!"; wait; end
process; end;

| | XSLT |

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">\n <xsl:template
match="/">\n <output>Hello, World!</output>\n
</xsl:template>\n</xsl:stylesheet>

| | Yacc |

%{\n#include <stdio.h>\n%}\n%%\nprogram: /* empty */\n | program '\\n'
{\n printf("Hello, World!\\n");\n }\n%%\nint main(){yyparse();}

| | Zsh |

echo "Hello, World!"

| | Ada |

with Ada.Text_IO; use Ada.Text_IO;\nprocedure Hello is begin Put_Line
("Hello, World!"); end Hello;

Last update: 2026/01/03 16:03 hello_world http://serviceit.cz/doku.php?id=hello_world

http://serviceit.cz/ Printed on 2026/02/02 02:33

| | APL |

⍝ Hello, World!\n'Hello, World!'

| | AppleScript |

display dialog "Hello, World!"

| | Arduino (C++) |

void setup(){Serial.begin(9600); Serial.println("Hello, World!");}\nvoid
loop(){}

| | B |

main(){printf("Hello, World!\\n");}

| | BASIC (QBASIC) |

PRINT "Hello, World!"

| | Bash (POSIX) |

printf "Hello, World!\n"

| | Befunge |

"Hello, World!">:#,_@

| | Boo |

print "Hello, World!"

| | C (Objective‑C++) |

#import <Foundation/Foundation.h>\nint main(){NSLog(@"Hello, World!");
return 0;}

| | Chapel |

writeln("Hello, World!");

| | ChucK |

println("Hello, World!");

| | Clipper |

? "Hello, World!"

2026/02/02 02:33 11/19 hello_world

IT ENCYKLOPEDIE - http://serviceit.cz/

| | CobolScript |

IDENTIFICATION DIVISION.\nPROGRAM-ID. Hello.\nPROCEDURE DIVISION.\nDISPLAY
"Hello, World!".\nSTOP RUN.

| | ColdFusion |

<cfoutput>Hello, World!</cfoutput>

| | Common Lisp |

(format t "Hello, World!~%")

| | D (DMD) |

import std.stdio;\nvoid main(){writeln("Hello, World!");}

| | Dart (CLI) |

void main(){print('Hello, World!');}

| | Delphi |

program HelloWorld;\nbegin\n WriteLn('Hello, World!');\nend.

| | Dylan |

format-out("Hello, World!%n");

| | Eiffel |

class HELLO\ncreate make\nfeature\n make do\n print ("Hello, World!%N")\n
end\nend

| | Elixir (Mix) |

IO.puts "Hello, World!"

| | Elm |

module Main exposing (main)\nimport Browser\nmain = Browser.sandbox { init =
(), view = _ -> Html.text "Hello, World!", update = _ _ -> () }

| | Emacs Lisp |

(message "Hello, World!")

| | Erlang (OTP) |

Last update: 2026/01/03 16:03 hello_world http://serviceit.cz/doku.php?id=hello_world

http://serviceit.cz/ Printed on 2026/02/02 02:33

-module(hello).\n-export([hello/0]).\nhello() -> io:format("Hello,
World!~n").

| | F# (script) |

printfn "Hello, World!"

| | Factor |

"Hello, World!" print

| | Falcon |

print("Hello, World!")

| | FAUST |

process = _:+("Hello, World!");

| | Forth (gforth) |

." Hello, World!" CR

| | GDScript (Godot) |

func _ready():\n print("Hello, World!")

| | Golo |

module hello\nfunction main = |args| -> println("Hello, World!")

| | Gosu |

println("Hello, World!")

| | Groovy (script) |

println 'Hello, World!'

| | Hack |

<?hh\n<<__EntryPoint>>\nfunction main(): void { echo "Hello, World!\n"; }

| | Haskell (GHCi) |

putStrLn "Hello, World!"

| | Haxe (hx) |

2026/02/02 02:33 13/19 hello_world

IT ENCYKLOPEDIE - http://serviceit.cz/

class Hello { static function main() { trace("Hello, World!"); } }

| | IDL (Interface Definition Language) |

interface Hello { void sayHello(); };

| | Io |

"Hello, World!" println

| | J (JAva) |

'Hello, World!'

| | Jolie |

define HelloWorld { println("Hello, World!"); }

| | Julia (script) |

println("Hello, World!")

| | K (Kona) |

"Hello, World!"

| | Kotlin (JVM) |

fun main() { println("Hello, World!") }

| | LabVIEW (G) |

[Hello World] (text constant)

| | Lisp (Scheme) |

(display "Hello, World!") (newline)

| | LiveCode |

put "Hello, World!" into field "output"

| | Logtalk |

:- object(hello).\n :- public([say/0]).\n say :- write('Hello, World!'),
nl.\n:- end_object.

| | LOLCODE |

Last update: 2026/01/03 16:03 hello_world http://serviceit.cz/doku.php?id=hello_world

http://serviceit.cz/ Printed on 2026/02/02 02:33

HAI 1.2\n VISIBLE "Hello, World!"\nKTHXBYE

| | LotusScript |

Msgbox "Hello, World!"

| | Magik |

_print "Hello, World!"

| | Mathematica |

Print["Hello, World!"]

| | M4 |

define(msg', `Hello, World!')msg

| | Max/MSP (JavaScript) |

post("Hello, World!\n");

| | Mercury (imperative) |

:- module hello.\n:- interface.\n:- pred main(io::di, io::uo) is det.\n:-
implementation.\nmain(!IO) :- io.write_string("Hello, World!\n", !IO).

| | Mesa |

MODULE Hello;\nBEGIN\n Out.Text := "Hello, World!";\nEND Hello.

| | MiniScript |

print "Hello, World!"

| | MQL4 |

void OnStart(){Print("Hello, World!");}

| | MUMPS |

WRITE "Hello, World!",!

| | NATURAL |

WRITE 'Hello, World!'

| | Nemerle |

2026/02/02 02:33 15/19 hello_world

IT ENCYKLOPEDIE - http://serviceit.cz/

System.Console.WriteLine("Hello, World!");

| | NetLogo |

observer> print "Hello, World!"

| | Nimrod |

echo "Hello, World!"

| | OPL (IBM ILOG) |

execute { writeln("Hello, World!"); }

| | OpenSCAD |

echo("Hello, World!");

| | Oz |

{Browse "Hello, World!"}

| | PARI/GP |

print("Hello, World!\n")

| | Pascal (FreePascal) |

program Hello; begin writeln('Hello, World!'); end.

| | Pikespeak |

print "Hello, World!"

| | PL/I |

PUT EDIT('Hello, World!');

| | PL/SQL (Oracle) |

BEGIN DBMS_OUTPUT.PUT_LINE('Hello, World!'); END;

| | PostScript (Level 2) |

(Hello, World!) =

| | PowerBuilder |

MessageBox("Hello", "World!")

Last update: 2026/01/03 16:03 hello_world http://serviceit.cz/doku.php?id=hello_world

http://serviceit.cz/ Printed on 2026/02/02 02:33

| | Prolog (SWI) |

:- initialization(main).\nmain :- writeln('Hello, World!'), halt.

| | PureBasic |

MessageRequester("Hello","World")

| | Q# |

operation SayHello() : Unit { Message("Hello, World!"); }

| | R (Rscript) |

cat("Hello, World!\n")

| | Racket (Typed) |

#lang typed/racket\n(: hello (-> Void))\n(define (hello) (printf "Hello,
World!\n"))\n(hello)

| | REBOL 2 |

print "Hello, World!"

| | Red |

print "Hello, World!"

| | ReScript |

Js.log("Hello, World!")

| | Rexx |

say 'Hello, World!'

| | RPGLE |

*FREE\ndsply 'Hello, World!'

| | Ruby (irb) |

puts "Hello, World!"

| | Rust (stable) |

fn main() { println!("Hello, World!"); }

2026/02/02 02:33 17/19 hello_world

IT ENCYKLOPEDIE - http://serviceit.cz/

| | SAS |

%put Hello, World!;

| | Scala (3) |

@main def hello = println("Hello, World!")

| | Scheme (R5RS) |

(display "Hello, World!") (newline)

| | Scratch |

[when green flag clicked] → say "Hello, World!" for 2 secs

| | Simula |

Begin\n OutText("Hello, World!");\n End.

| | Smalltalk (Pharo) |

Transcript show: 'Hello, World!'; cr.

| | Solidity (0.8) |

pragma solidity ^0.8.0;\ncontract Hello { function greet() public pure
returns (string memory){ return "Hello, World!"; } }

| | SPARK (Ada) |

with Ada.Text_IO; use Ada.Text_IO; procedure Hello is begin Put_Line
("Hello, World!"); end Hello;

| | Squirrel |

print("Hello, World!");

| | Stata |

display "Hello, World!"

| | Swift (macOS) |

print("Hello, World!")

| | Tcl (expect) |

puts "Hello, World!"

Last update: 2026/01/03 16:03 hello_world http://serviceit.cz/doku.php?id=hello_world

http://serviceit.cz/ Printed on 2026/02/02 02:33

| | TypeScript (node) |

console.log('Hello, World!');

| | UnityScript |

print("Hello, World!");

| | V (Vale) |

fn main() { println('Hello, World!') }

| | Vala (GNOME) |

void main(){print("Hello, World!\n");}

| | Verilog‑AMS |

module hello; initial $display("Hello, World!"); endmodule

| | Visual Basic 6 |

MsgBox "Hello, World!"

| | Visual Basic .NET |

Module Hello\n Sub Main()\n Console.WriteLine("Hello, World!")\n End
Sub\nEnd Module

| | WLang |

out "Hello, World!"

| | X10 |

public class HelloWorld { public static def main(Rail[String] args) {
Console.OUT.println("Hello, World!"); } }

| | Xojo |

MessageBox("Hello, World!")

| | Yacc (Bison) |

%{\n#include <stdio.h>\n%}\n%%\nprogram: / empty */\n | program '\n' {
printf("Hello, World!\n"); }\n%%\nint main(){yyparse();}

| | Zig |

2026/02/02 02:33 19/19 hello_world

IT ENCYKLOPEDIE - http://serviceit.cz/

const std = @import("std");\npub fn main() void { std.debug.print("Hello,
World!\n", .{}); }

| | Zsh (shell) |

echo "Hello, World!"

From:
http://serviceit.cz/ - IT ENCYKLOPEDIE

Permanent link:
http://serviceit.cz/doku.php?id=hello_world

Last update: 2026/01/03 16:03

http://serviceit.cz/
http://serviceit.cz/doku.php?id=hello_world

