
2026/02/02 10:34 1/3 Rust: Programování s nulovými náklady na bezpečnost

IT ENCYKLOPEDIE - https://serviceit.cz/

Rust: Programování s nulovými náklady na
bezpečnost

Rust je systémový programovací jazyk, který kombinuje výkon nízkoúrovňových jazyků s bezpečností
a ergonomií moderních vysokoúrovňových jazyků. Jeho hlavním cílem je eliminovat chyby typu
„segmentation fault“ a úniky paměti (memory leaks) už v době kompilace, aniž by k tomu potřeboval
Garbage Collector (GC).

1. Revoluční koncept: Vlastnictví (Ownership)

Největší inovací Rustu je systém Ownership, který nahrazuje automatickou správu paměti (jako v JS)
i manuální správu (jako v C++).

Tři pravidla vlastnictví:

1. Každá hodnota v Rustu má proměnnou, která je jejím **vlastníkem**.
2. V jeden okamžik může existovat pouze **jeden vlastník**.
3. Když vlastník odejde z rozsahu platnosti (scope), hodnota je
automaticky uvolněna z paměti.

Půjčování (Borrowing) a Lifetime

Aby mohl kód efektivně pracovat s daty bez jejich neustálého kopírování, používá Rust reference:

Imutabilní reference (&T): Můžete mít neomezeně mnoho čtenářů.
Mutabilní reference (&mut T): Můžete mít pouze jednoho zapisovatele v daný čas (eliminace
Data Race).

2. Architektura a kompilace

Rust využívá infrastrukturu LLVM, což mu dává přístup ke špičkovým optimalizacím a podpoře mnoha
architektur (x86, ARM, WebAssembly).

Kompilační proces:

1. **Rustc (Kompilátor):** Zpracuje zdrojový kód a provede syntaktickou
analýzu.
2. **Borrow Checker:** Unikátní fáze, která kontroluje pravidla vlastnictví
a životnosti (lifetimes). Pokud kód není bezpečný, kompilace skončí chybou.
3. **MIR (Mid-level IR):** Mezi-reprezentace pro optimalizace specifické pro
Rust.

https://serviceit.cz/doku.php?id=javascript
https://serviceit.cz/doku.php?id=c
https://serviceit.cz/doku.php?id=llvm
https://serviceit.cz/doku.php?id=cpu
https://serviceit.cz/doku.php?id=cpu

Last update: 2025/12/31 18:11 rust https://serviceit.cz/doku.php?id=rust

https://serviceit.cz/ Printed on 2026/02/02 10:34

4. **LLVM IR:** Převod do mezikódu [[LLVM]], který se následně zkompiluje do
strojového kódu.

3. Ekosystém a nástroje

Rust je známý svou vynikající sadou nástrojů, která je součástí instalace:

Cargo: Správce balíčků a sestavovací systém (obdoba npm v JS). Stará se o závislosti,
kompilaci i testování.
Rustup: Nástroj pro správu verzí jazyka a toolchainů.
Crates.io: Centrální repozitář knihoven (v Rustu se knihovnám říká „crates“).
Clippy: Linter, který upozorňuje na neefektivní nebo neidiomatický kód.

4. Bezpečnost vs. Výkon (Zero-cost Abstractions)

Rust se drží principu, že abstrakce by neměly zpomalovat výsledný program.

Nulové náklady na bezpečnost: Kontrola paměti probíhá při kompilaci, nikoliv za běhu.
Pattern Matching: Mocný nástroj pro větvení logiky, který kompilátor hlídá, zda jste pokryli
všechny možnosti.
Error Handling: Rust nepoužívá výjimky (exceptions). Místo toho používá typy Result<T, E>
a Option<T>, které nutí vývojáře explicitně řešit chyby.

5. Rust v moderním IT světě

Díky své spolehlivosti proniká Rust do kritické infrastruktury:

1. **Linux Kernel:** Rust se stal druhým oficiálním jazykem pro psaní
ovladačů v jádře [[Linux]]u (hned po C).
2. **WebAssembly (Wasm):** Rust je nejoblíbenějším jazykem pro psaní vysoce
výkonného kódu, který běží v prohlížeči (např. grafické editory, hry).
3. **Cloud & Networking:** Projekty jako Firecracker (AWS) nebo síťové
stacky Cloudflare sází na Rust kvůli bezpečnosti proti útokům na přetečení
bufferu.

6. Příklad kódu

Ukázka bezpečné práce s polem a pattern matching:

fn main() {
 let cisla = vec![1, 2, 3];

 // Bezpečný přístup k prvku, který nemusí existovat
 match cisla.get(5) {

https://serviceit.cz/doku.php?id=javascript

2026/02/02 10:34 3/3 Rust: Programování s nulovými náklady na bezpečnost

IT ENCYKLOPEDIE - https://serviceit.cz/

 Some(hodnota) => println!("Nalezeno číslo: {}", hodnota),
 None => println!("Prvek na této pozici neexistuje."),
 }
}

7. Srovnání: Rust vs. C++
Vlastnost Rust C++
Správa paměti Automatická (Ownership), bez GC. Manuální (RAII / Smart Pointers).
Bezpečnost Garantovaná kompilátorem (Safe Rust). Na zodpovědnosti programátora.

Rychlost vývoje Pomalejší start (boj s Borrow
Checkerem). Rychlejší prototypování, delší ladění chyb.

Ekosystém Moderní, integrovaný (Cargo). Fragmentovaný (CMake, Conan, Makefile).

—

Víte, že? Rust obsahuje klíčové slovo unsafe. To umožňuje vývojáři „vypnout“ některé kontroly v
případech, kdy je nutný přímý přístup k hardwaru, ale tato místa jsou v kódu jasně označená a
izolovaná.

Související: C++, LLVM, Linux, WebAssembly

From:
https://serviceit.cz/ - IT ENCYKLOPEDIE

Permanent link:
https://serviceit.cz/doku.php?id=rust

Last update: 2025/12/31 18:11

https://serviceit.cz/doku.php?id=c
https://serviceit.cz/doku.php?id=llvm
https://serviceit.cz/doku.php?id=linux
https://serviceit.cz/doku.php?id=webassembly
https://serviceit.cz/
https://serviceit.cz/doku.php?id=rust

	Rust: Programování s nulovými náklady na bezpečnost
	1. Revoluční koncept: Vlastnictví (Ownership)
	Tři pravidla vlastnictví:
	Půjčování (Borrowing) a Lifetime

	2. Architektura a kompilace
	Kompilační proces:

	3. Ekosystém a nástroje
	4. Bezpečnost vs. Výkon (Zero-cost Abstractions)
	5. Rust v moderním IT světě
	6. Příklad kódu
	7. Srovnání: Rust vs. C++

